Quantum Information Processing

Lecture 3 Postulates

Complex numbers ($i^2 = -1$)

Representations:

- algebraic: z = a + ib
- exponential: $z = re^{i\phi} = r(\cos\phi + i\sin\phi)$

Operations:

• addition and subtraction:

 $(a + ib) \pm (c + id) = (a \pm c) + i(b \pm d)$

• multiplication:

 $\begin{aligned} (a + ib) \cdot (c + id) &= (ac - bd) + i(ad + bc) \\ re^{i\phi} \cdot r'e^{i\phi'} &= rr'e^{i(\phi + \phi')} \end{aligned}$

• complex conjugate:

$$z^* \equiv \overline{z} \equiv a - ib \equiv re^{-i\phi}$$

• Absolute value:

$$|z| = \sqrt{a^2 + b^2} = r, |z_1, z_2| = |z_1|, |z_2|$$

absolute value squared: |z|² = a² + b² = r² important: |z|² = zz̄
inverse: ¹/_z = ^z/_{|z|²}

Global and relative phases

Phase

If $re^{i\phi}$ is a complex number, $e^{i\phi}$ is called phase.

Global phase

The following states differ only by a global phase:

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $e^{i\phi} |\psi\rangle = e^{i\phi} \alpha |0\rangle + e^{i\phi} \beta |1\rangle$

These states are indistinguishable! Why? Because $|\alpha|^2 = |e^{i\phi}\alpha|^2$ and $|\beta|^2 = |e^{i\phi}\beta|^2$ so it makes no difference during measurements.

Relative phase

These states differ by a relative phase:

$$+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \qquad |-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Are they also indistinguishable? No! (Measure in a different basis.)

Remember: global phase does not matter, relative phase matters!

Remember that:

$$e^{i\phi} = 1 \times e^{i\phi} \rightarrow r = 1$$
$$|e^{i\phi}| = \sqrt{1^2} = 1$$
$$|e^{i\phi}\alpha| = |e^{i\phi}| \cdot |\alpha| = |\alpha|$$

Qubit states: the Bloch sphere

Any qubit state can be written as

$$|\psi\rangle = \underbrace{\cos\frac{\theta}{2}}_{\alpha}|0\rangle + \underbrace{e^{i\varphi}\sin\frac{\theta}{2}}_{\beta}|1\rangle$$

for some angles $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi)$.

There is a one-to-one correspondence between qubit states and points on a unit sphere (also called Bloch sphere):

Bloch vector of $|\psi\rangle$ in spherical coordinates:

$$\begin{cases} x = \sin \theta \cos \phi \\ y = \sin \theta \sin \phi \\ z = \cos \theta \end{cases}$$

Measurement probabilities:

$$|\alpha|^{2} = \left(\cos\frac{\theta}{2}\right)^{2} = \frac{1}{2} + \frac{1}{2}\cos\theta$$
$$|\beta|^{2} = \left(\sin\frac{\theta}{2}\right)^{2} = \frac{1}{2} - \frac{1}{2}\cos\theta$$

It might, at first sight, seem that there should be four degrees of freedom in $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, as α and β are complex numbers with two degrees of freedom each.

However, one degree of freedom is removed by the normalization constraint $\alpha^2 + \beta^2 = 1$. This means, with a suitable change of coordinates, one can eliminate one of the degrees of freedom. One possible choice is that of Hopf coordinates:

$$\alpha = e^{i\psi}\cos\frac{\theta}{2}$$
$$\beta = e^{i(\psi+\phi)}\sin\frac{\theta}{2}.$$

Additionally, for a single qubit the overall phase of the state $e^{i\psi}$ has no physically observable consequences, so we can arbitrarily choose α to be real (or β in the case that α is zero), leaving just two degrees of freedom:

$$\alpha = \cos \frac{\theta}{2},$$
$$\beta = e^{i\phi} \sin \frac{\theta}{2}$$

where $e^{i\phi}$ is the physically significant relative phase.