
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum Information Processing
Lecture 11

Dr. Ahmad Khonsari

Uiversity of Tehran

Fall 2022

January 10, 2023

Slides Prepared by Mahdi Dolati

Dr. Ahmad Khonsari (Uiversity of Tehran) QIP January 10, 2023 1 / 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Fourier transform

In the early 1800s French mathematician Joseph
Fourier discovered (or invented if you prefer) the
Fourier transform. It allows frequency
components of signals to be extracted, and is
still at the heart of modern day signal
processing.
In particular, the discrete Fourier transform
(DFT) is still widely used, which takes an input
vector x and transforms of it an output vector y
as follows:

yk =
1√
N

N−1∑
j=0

xje2πijk/N

(where both x and y have N elements).

Joseph Fourier
Image Source: Wikipedia
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The three-qubit quantum Fourier transform
The three-qubit quantum Fourier transform is as follows (we now use
|j⟩ = |j1j2j3⟩ rather than |x⟩ for the general quantum state).

H S T

H S

H

Prior to the SWAP gate we have:

|j1⟩ →
|0⟩ + eπij1 |1⟩

√
2

→
|0⟩ + eπij1 eπij2/2|1⟩

√
2

→
|0⟩ + eπij1 eπij2/2eπij3/4|1⟩

√
2

|j2⟩ →
|0⟩ + eπij2 |1⟩

√
2

→
|0⟩ + eπij2 eπij3/2|1⟩

√
2

|j3⟩ →
|0⟩ + eπij3 |1⟩

√
2

We can thus express the state after the SWAP gate:

1
2
√

2
(|0⟩ + eπij3 |1⟩)(|0⟩ + eπi(j2+(j3/2))|1⟩)(|0⟩ + eπi(j1+(j2/2)+(j3/4))|1⟩)
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The quantum Fourier transform circuit

|j1⟩ H R2 Rn−1 Rn

|j2⟩ H Rn−2 Rn−1

∣∣jn−1
〉

H R2

|jn⟩ H

Where Rk =

[
1 0
0 e2πi/2k

]
is a single qubit unitary rotation gate.
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The quantum Fourier transform
We can see that the general quantum Fourier transform is thus (where
N = 2n):

1√
N
(|0⟩+ eπijn |1⟩)⊗ . . .⊗ (|0⟩+ eπi(j2+(j3/2)+···+(jn/(2n−2)))|1⟩)

⊗ (|0⟩+ eπi(j1+(j2/2)+···+(jn/(2n−1)))|1⟩)

To rearrange further, we will use binary decimals (also termed binary
fractions, that is we can express: a1

2 + a2
4 + · · ·+ an

24 as the binary decimal
0.a1a2 . . . an . So we can thus express the QFT:

1√
N

(|0⟩+ e2πi(0.jn)|1⟩)⊗ · · · ⊗ (|0⟩+ e2πi(0.j2j3...jn)|1⟩)⊗ (|0⟩+ e2πi(0.j1j2...jn)|1⟩)

Furthermore, as e2mπi = 1 for any integer m, this equals:

1√
N

n⊗
ℓ=1

(|0⟩+ e2πij2−ℓ |1⟩) (1)
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The quantum Fourier transform (continued)

We now rearrange the quantum Fourier transform into standard form:

1√
N

n⊗
ℓ=1

(|0⟩+ e2πij2−ℓ |1⟩) = 1√
N

n⊗
ℓ=1

( 1∑
kℓ=0

e2πijkℓ2−ℓ |kℓ⟩
)

=
1√
N

1∑
k1=0

· · ·
1∑

kn=0

n⊗
ℓ=1

e2πijkℓ2−ℓ |kℓ⟩

=
1√
N

1∑
k1=0

· · ·
1∑

kn=0
e2πij(

∑n
ℓ=1 kℓ2−ℓ)|k1 . . . kn⟩

=
1√
N

N−1∑
k=0

e2πijk/N |k⟩
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Comparing the QFT to the DFT
From the analysis on the previous slides we have that the QFT performs the
transformation:

|j⟩ → 1√
N

N−1∑
k=0

e2πijk/N |k⟩

If we now consider an arbitrary state, by linearity:
N−1∑
j=0

xj |j⟩ →
N−1∑
j=0

xj

N−1∑
k=0

e2πijk/N |k⟩

=

N−1∑
k=0

( 1√
N

N−1∑
j=0

xje2πijk/N)
|k⟩ =

N−1∑
k=0

yk |k⟩

i.e., using the previously stated definition of the DFT:

yk =
1√
N

N−1∑
j=0

xje2πijk/N

Dr. Ahmad Khonsari (Uiversity of Tehran) QIP January 10, 2023 7 / 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The inverse quantum Fourier transform

To invert the QFT, we must run the circuit in reverse, with the inverse of
each gate in place to achieve the transform:

1√
N

N−1∑
k=0

e2πijk/N |k⟩ → |j⟩

We have already seen that the Hadamard gate is self-inverse, and the
same is clearly true for the SWAP gate; the inverse of the rotations gate
Rk is given by:

R†
k =

[
1 0
0 e−2πi/2k

]
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The inverse quantum Fourier transform circuit

Thus we can express the inverse QFT circuit:

R†
n R†

n−1 R†
2 H

R†
n−1 R†

n−2 H

R†
2 H

H
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Significance of the quantum Fourier transform

The QFT on n qubits requires n Hadamard gates and n(n−1)
2 2-qubit

conditional rotation gates.
This means that it can be efficiently implemented using gates from a
finite universal gate-set.
It cannot be used to speed-up signal processing tasks...
...but the QFT is at the heart of many applications of quantum
computing and simulation that demonstrate exponential speed-ups
compared to the best-known classical counterparts. In particular, as
part of the quantum phase estimation sub-routine.
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Quantum phase estimation

Quantum phase estimation addresses the following problem:
We have a n-qubit oracle function U , encoded in the form of a
controlled-U unitary.
U has an eigenvalue e2πiϕ, associated with an eigenvector |u⟩ which
we can prepare.
We wish to estimate the phase, ϕ, of the eigenvalue to t bits of
precision.
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The action of the oracle on |+⟩

We can express the result when |+⟩ is used to control U :

|+⟩

|u⟩ U

Which is the transformation:
1√
2
(|0⟩+ |1⟩)|u⟩ → 1√

2
(|0⟩|u⟩+ |1⟩e2πiϕ|u⟩)

=
1√
2
(|0⟩+ e2πiϕ|1⟩)|u⟩
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The action of the oracle on |+⟩ (continued)

In QPE we have to apply U repeatedly:

|+⟩

|u⟩ U m
=

. . .

. . .

m gates

|+⟩

|u⟩ U U U

Which is the transformation:
1√
2
(|0⟩+ |1⟩)|u⟩ → 1√

2
(|0⟩+ e2mπiϕ|1⟩)|u⟩
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Using the oracle to prepare the state

. . .

. . .

. . .

. . .

1st register
t qubits

|0⟩ H 1√
2
(|0⟩ + e2mπi2t−1ϕ |1⟩)

|0⟩ H 1√
2
(|0⟩ + e2mπi21ϕ |1⟩)

|0⟩ H 1√
2
(|0⟩ + e2mπi20ϕ |1⟩)

2nd register |u⟩ Ux Ux Ux |u⟩

Using the previous analysis, the final state can be expressed:

1√
2t

2t−1∑
j=0

e2mπiϕj |j⟩|u⟩
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Using the inverse QFT to estimate the eigenvalue phase

We now perform an inverse QFT on the first register: by definition, the
effect of the inverse QFT on the first register is the transformation:

1√
2t

2t−1∑
j=0

e2mπiϕj |j⟩|u⟩ → |ϕ̃⟩|u⟩

Thus measuring the first register, whose state is now |ϕ̃⟩, gives a t-bit
approximation, ϕ̃, of the eigenvalue phase, ϕ.
In summary, the entire QPE circuit can be expressed:

|0⟩ H⊗t QFT †

|u⟩ U j |u⟩
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Quantum phase estimation example

Typically QPE is applied to large unitaries, but for the example we’ll
consider the single-qubit unitary

U =

[
0 −i
i 0

]

Which we know has eigenvector |u⟩ =
[

1
−i

]
associated with eigenvalue

−1, i.e., ϕ = 1
2 .

We will estimate the eigenvalue to two bits of precision (i.e., t = 2).
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Quantum phase estimation example
Circuit

|0⟩ H S S S H

|0⟩ H H

|u⟩ U U U

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ0⟩ =
1
2
(|0⟩ + |1⟩)(|0⟩ + |1⟩)|u⟩ |ψ1⟩ =

1
2
(|0⟩ + e2πi |1⟩)(|0⟩ + eπi |1⟩)|u⟩

|ψ2⟩ =
1
√

2
(|0⟩ − |1⟩)|0⟩|u⟩ |ψ3⟩ =

1
√

2
(|0⟩ − |1⟩)|0⟩|u⟩

|ψ4⟩ = |1⟩|0⟩|u⟩

So we measure 10 which corresponds to the binary fraction 1 × 1
2 + 0 × 1

4 = 1
2 as expected.
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Significance of quantum phase estimation

QPE enables the phase of an eigenvalue to be estimated to an
arbitrary number of bits of precision.
It can be shown that the estimate is good even when the phase
cannot be exactly expanded as a binary fraction.
QPE is at the heart of quantum chemistry and many quantum
computing algorithms.
As QPE uses the oracle U and the prepared state |u⟩ it should be
thought of as a subroutine that can be called, rather than an entire
algorithm in and of itself.
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