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What is quantum mechanics?

When we speak of classical mechanics we think of Newtons laws, but
quantum mechanics is quite different – it is not a physical theory, but
rather a framework for the development of physical theories.

There are four postulates of quantum mechanics that any (quantum)
physical theory must satisfy.

Quantum electrodynamics (Feynman) is an example of a successful
quantum physical theory, whilst a quantum theory of gravity remains
elusive, and is one of the most important open problems in theoretical
physics.
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State space

Postulate 1
Associated to any isolated physical system is a complex vector space with
an inner product (that is, a Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which is a
unit vector in the systems state space.

In this course, we consider only qubits, quantum states with space C2, and
compositions thereof (i.e., according to postulate 4), although higher
dimensional “qudit” states are sometimes considered in quantum
computing literature, and indeed physically there may be infinite
dimensional systems.
Examples of physical realisations of qubits:

The spin of an electron.
The polarisation of a photon.
The current in a superconducting circuit.
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Evolution

Postulate 2
The time evolution of the state of a closed quantum system is described
by the Schrödinger equation:

iℏd|ψ⟩
dt

= H |ψ⟩

where ℏ is the physical constant, Plancks constant and H is a fixed
Hermitian operator known as the Hamiltonian of the closed system.
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Evolution – simplified

In computer science, we are typically interested not in continuous time
evolution, but the state at discretised time intervals. It follows that
postulate 2 can thus be simplified

Postulate 2’
The change in the state of a closed quantum system from t0 to t1 is
described by the unitary transformation:

|ψt1⟩ = U |ψt0⟩

This expression follows directly from the Schrödinger equation.
The unitary operator U depends only on the underlying Hamiltonian
and the times t0 and t1.
In quantum computing we are generally treat postulate 2’ as the
fundamental expression of state evolution.
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The significance of unitarity

The solution to the Schrödinger equation is:

|ψt1⟩ = exp
(

iH (t1 − t0)

ℏ

)
|ψt0⟩

From which we define the unitary, U :

U (t0, t1) = exp
(

iH (t1 − t0)

ℏ

)
The unitary nature of the discrete time evolution follows directly from the
Hermitian nature of the continuous time evolution, and furthermore
unitary operators are the unique linear maps that preserve the norm:

|||ψt1⟩|| = ||U |ψt0⟩|| = |||ψt0⟩|| = 1
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The Pauli matrices

The Pauli matrices X; Y and Z are important one-qubit unitary matrices.

X =

[
0 1
1 0

]
Which has the following effect on the computational basis states:
X |0⟩ = |1⟩; X |1⟩ = |0⟩.

Y = i
[
0 −1
1 0

]
Which has the following effect on the computational basis states:
Y |0⟩ = i|1⟩; Y |1⟩ = −i|0⟩.

Z =

[
1 0
0 −1

]
Which has the following effect on the computational basis states:
Z |0⟩ = |0⟩; Z |1⟩ = −|1⟩.
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Wolfgang Pauli

Wolfgang Pauli was a pioneer in
quantum physics, notable for the
Pauli exclusion principle and coining
the phrase “not even wrong” (in
scientific argument), amongst many
other things.

Source: Wikipedia
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The Hadamard matrix
Another important one-qubit unitary is the Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]
Which has the following effect on the computational basis states:

H |0⟩ = 1√
2
(|0⟩+ |1⟩) ≡ |+⟩

H |1⟩ = 1√
2
(|0⟩ − |1⟩) ≡ |−⟩

i.e., it puts the computational basis states in superposition. H is
self-inverse, therefore:

H |+⟩ = |0⟩ H |−⟩ = |1⟩

i.e., it interferes the superposition to recover the original computational
basis states.
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Measurement

Postulate 3
Quantum measurements are described by a collection {Mm} of
measurement operators. These are operators acting on the state space of
the system being measured. The index m refers to the measurement
outcomes that may occur in the experiment.

If the state of the quantum system is |ψ⟩ directly before the measurement,
the probability of the mth outcome is given by:

p(m) = ⟨ψ|M †
mMm |ψ⟩

and the state of the system after the measurement is

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩

Dr. Ahmad Khonsari (Uiversity of Tehran) QIP December 16, 2022 10 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Measurement (continued)
It is necessary that the probabilities of all possible outcomes sum to one, that is∑

m
p(m) =

∑
m

⟨ψ|M †
mMm|ψ⟩ = 1

as |ψ⟩ is arbitrary and not dependent on the index m, we can see that this is
satisfied by the completeness equation,∑

m
M †

mMm = I

That is, because: ∑
m

p(m) =
∑
m

⟨ψ|M †
mMm|ψ⟩

= ⟨ψ|

(∑
m

M †
mMm

)
|ψ⟩

= ⟨ψ|I |ψ⟩
= ⟨ψ|ψ⟩
= 1
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Measurement in the computational basis

In computer science, we often implicitly assume that by measurement we
mean single qubit measurement in the computational basis. In this case,
our measurement operators are

M0 = |0⟩⟨0| =
[
1 0
0 0

]
and M1 = |1⟩⟨1| =

[
0 0
0 1

]
which we can verify satisfies the completeness equation:[

1 0
0 0

]† [1 0
0 0

]
+

[
0 0
0 1

]† [0 0
0 1

]
=

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
= I

Now let |ψ⟩ = α|0⟩+ β|1⟩, we have that:

p(M0) = |α|2 p(M1) = |β|2
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Measurement in the |+⟩, |−⟩ basis
Consider the state |+⟩ = (1/

√
2)(|0⟩+ |1⟩). If we measure this in the

computational basis, we get either outcome M0 or M1 each with
probability 1/2. However, if we measure in the |+⟩, |−⟩ basis (recall ),
which has measurement operators

M+ = |+⟩⟨+| = 1
2

[
1 1
1 1

]
and M− = |−⟩⟨−| = 1

2

[
1 −1
−1 1

]
then we get state M+ with probability 1:

p(M+) =
[

1√
2

1√
2

] [1
2

1
2

1
2

1
2

] [1
2

1
2

1
2

1
2

] [ 1√
2

1√
2

]

=
[

1√
2

1√
2

] [1
2

1
2

1
2

1
2

] [ 1√
2

1√
2

]

=
[

1√
2

1√
2

] [ 1√
2

1√
2

]
= 1
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Measurement in the |+⟩, |−⟩ basis (continued)

We could get the same result more quickly using Dirac notation:

p(M+) = ⟨+|(|+⟩⟨+|)†(|+⟩⟨+|)|+⟩ = (⟨+|+⟩)3 = 1

Similarly, if instead |ψ⟩ = |−⟩ then we get outcome M− with probability 1:

p(M−) = ⟨−|(|−⟩⟨−|)†(|−⟩⟨−|)|−⟩ = (⟨−|−⟩)3 = 1

Whereas if we measure in the computational basis, we still get each
outcome with probability 1/2. This is an example of the significance of
relative phase.
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Global and relative phase
We can write any one-qubit state as:

|ψ⟩ = eiθ(α|0⟩+ βeiϕ|1⟩) ≡ eiθ|ψ′⟩

where α and β are positive real numbers. θ is known as the global phase,
and has no observable consequences because:

U |ψ⟩ = Ueiθ(α|0⟩+ βeiϕ|1⟩) = eiθU (α|0⟩+ βeiϕ|1⟩) = eiθU |ψ′⟩

and for any measurement operator Pm ,

⟨ψ|P†
mPm |ψ⟩ = ⟨ψ′|e−iθP†

mPmeiθ|ψ′⟩ = ⟨ψ′|P†
mPm |ψ′⟩

Thus we typically neglect global phase. The same cannot, however be said
for the relative phase, ϕ. For example, in the previous slide |+⟩ and |−⟩
both have α = β = 1/

√
2, but in the former ϕ = 0, whereas in the latter

ϕ = π, and we saw that measurement in the |+⟩, |−⟩ basis could
distinguish these two 100% of the time.
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Composition

Postulate 4
The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the
state |ψi⟩, then the joint state of the total system is
|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

We can now see the significance of the fact that:

(U1 ⊗ U2)(|ψ1⟩ ⊗ |ψ2⟩) = (U1|ψ1⟩)⊗ (U2|ψ2⟩)

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ is what is known as a separable state. Let
|ψ′⟩ = (U1 ⊗ U2)(|ψ1⟩ ⊗ |ψ2⟩), |ψ′

1⟩ = U1|ψ1⟩, and |ψ′
2⟩ = U2|ψ2⟩, we

have that:
|ψ′⟩ = |ψ′

1⟩ ⊗ |ψ′
2⟩

i.e., single qubit unitary matrices applied to a separable state leads to a
separable state.
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Entangled states
As we shall see, quantum computing draws its advantage from the fact
that not all quantum states are separable. Consider the two qubit unitary

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


applied to the state |+⟩ ⊗ |0⟩:

CNOT(|+⟩ ⊗ |0⟩) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1/
√

2
0

1/
√

2
0

 =


1/

√
2

0
0

1/
√

2


=

1√
2
(|00⟩+ |11⟩)

an entangled state which cannot be separated as tensor product.
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